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RESUMO

INAGAKI, J. H. M. O conceito de Quantum Speed Limits e a geometrização do espaço de
estados. Julho de 2021. 22p. Monografia (Trabalho de Conclusão de Curso) - Instituto de Física de
São Carlos, Universidade de São Paulo, São Carlos, Julho de 2021.

Os Quantum Speed Limits (QSLs), ou limites quânticos de velocidade, vêm se tornando uma ferramenta
poderosa para analisar a dinâmica de sistemas quânticas por meio de limites fundamentais na evolução
entre estados. Aplicações com respeito a limitações para o processamento de informação e otimização
de dinâmicas de sistemas quânticos fechados e abertos motivam a formalização e exploração deste
conceito. Em especial, a abordagem geométrica na busca de QSLs se propõe a construir os alicerces
destes limites a partir da estrutura do espaço de estados. Neste trabalho de conclusão de curso,
contextualizamos o problema de busca por QSLs e formalizamos a abordagem geométrica baseada
no teorema de Morozova, Chentzov e Petz para estabelecermos uma família de QSLs válidos para
dinâmicas unitárias e não-unitárias. Aplicamos esta formulação a um modelo não-unitário de dephasing

de um qubit em contato com um grau de liberdade do ambiente com o fim de buscar relações entre os
QSLs analisados.

Palavras-chave: Informação quântica. Quantum speed limits. Metrologia quântica.
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1 INTRODUÇÃO

O início do século 20 foi marcado pelo profícuo desenvolvimento da mecânica quântica como fruto de
uma revolução científica em curso. Neste momento, a nossa concepção de realidade física fora posta em
cheque para dar lugar a uma nova forma de entender a natureza. Em especial, o princípio de incerteza
de Heisenberg (1927) estabeleceu um limite fundamental no nosso conhecimento acerca de quantidades
físicas. Na antiga mecânica ondulatória, a relação de incerteza posição-momento (∆x∆p ≥ ~/2)
relaciona a largura do pacote de onda no espaço da posição e momento, de forma que se a função de
onda de uma partícula no espaço das posições for bem localizada, no espaço dos momentos ela será
delocalizada, impossibilitando a medida simultânea destas duas quantidades. Na mecânica matricial,
dados dois observáveis A e B, os seus desvios padrões são relacionados por ∆A∆B ≥ |〈[A,B]〉|/2.
Esta última relação é uma limitação no estado de preparação do sistema: não é possível construir um
ensemble de sistemas quânticos em um estado de forma que viole o principio de incerteza.

Outro princípio de incerteza, também introduzido por Heisenberg, é entre energia e tempo
(∆E∆t ≥ ~). Há de se notar que ao passo que ∆E deva ser interpretado como o desvio padrão da
hamiltoniana H para uma dinâmica, a quantidade ∆t não possui este significado, visto que o tempo
não é elevado ao patamar de operador na mecânica quântica, como acontece com posição, momento,
entre outros1. Não obstante, uma interpretação comumente dada para o princípio de incerteza ∆E∆t

é de que uma medida da energia durante um tempo finito ∆t carrega uma incerteza ∆E. Entretanto,
devido a falta de rigorosidade nos argumentos a favor dessa interpretação, outros modelos e derivações
foram propostas para dar luz a essa característica da natureza quântica.

No espírito de buscar uma interpretação mais clara, Mandelstam e Tamm (MT) [1] derivaram
uma expressão similar aquela proposta por Heisenberg. Desta vez, a desigualdade supracitada seria
um limite inferior no tempo de evolução de um estado quântico inicial |ψ0〉 para um estado quântico
final |ψτ 〉 sobre uma dada dinâmica unitária independente do tempo. Este resultado foi explorado e
estendido para dinâmicas dependentes do tempo em diversos trabalhos posteriores, inclusive, pondo a
desigualdade sobre bases geométricas [2].

Cerca de 50 anos após a descoberta de MT, Margolus e Levitin (ML) [3] reportaram outro
limite para o tempo de evolução sobre uma dada dinâmica. O resultado de ML, por sua vez, não recobra
o resultado de MT e vice-versa. Assim, a existência de dois limites diferentes de igual validade impõe
uma resposta paradoxal para a seguinte pergunta: quão rápido pode ser dada a evolução de um sistema
quântico sujeito a uma dinâmica dada? Este é o objetivo principal na procura por QSLs, ou limites
quânticos de velocidade.
1 A dificuldade de encontrar um operador tempo foi posta inicialmente pelo chamado Teorema de Pauli em que

se demonstra a impossibilidade de existência de tal operador para um sistema quântico cujo hamiltonianao
H tem espectro discreto limitado inferiormente.



4

É natural que nos perguntemos quais seriam os limites para sistemas fechados dependentes
do tempo, estados mistos e para sistemas abertos — governados por uma equação mestra. O enten-
dimento deste limite quântico fundamental para uma dinâmica quântica pode nos fornecer insights

no incremento da velocidade de computação e processamento de dados, interesse especial dentro
de áreas de pesquisas bem estabelecidas, como a Informação e Computação Quântica, e de áreas
crescentes, como a Termodinâmica Quântica [4]. A partir da década de 80 houve um florescimento
da geometria da informação, congregando o conhecimento de geometria diferencial com a ciência
de informação. Em especial, a conexão entre medidas de distinguibilidades de estados e distância
no espaço de estados é feita. Para o caso quântico, o poderoso teorema de Morozova, Chentsov e
Petz (MCP), nos permite encontrar uma família de métricas Riemannianas contrativas no espaço de
estados, que nos viabiliza definir um número infinito de distâncias entre matrizes densidades distinta.
Em um trabalho recente, por Pires et al. [5], foi possível construir uma família de QSLs geométricos
univocativamente definidos pela família de métricas compatíveis com o teorema MCP. A grosso modo:
o tempo mínimo de evolução para uma determinada métrica ocorre quando a dinâmica evolui sobre
uma geodésica. É importante notar que, como há uma miríade de QSLs geométricos revelados por este
trabalho, é preciso encontrar o QSL mais tight 2.

A presente monografia está dividida como se segue. O Capítulo 2 será dedicado para a tarefa
de definir os QSLs sobre bases teóricas firmes. Serão discutidos os resultados de MT e ML, o teorema
de MCP, a contruibuição recente de Pires [5] e QSLs referentes as métricas de Fisher e Wigner-Yanase,
que serão de interesse especial para análises subsequentes. No Capítulo 3 iremos discutir o modelo de
atenuação de fase paralela, conhecido como dephasing, para um sistema de dois níveis acoplado com
um banho térmico. Será feita uma análise do QSL tanto para o sistema de dois níveis, quanto para o
banho, este último sendo a contribuição original apresentada nesta monografia. Procuramos determinar
o QSL mais tight entre as métricas mencionadas e compararemos os resultados para o qubit e para o
banho (ambiente). Por fim, o Capítulo 4 resumirá nossos resultados e conclusões.

2 Um QSL é mais tight que outro se fornece um limite inferior pro tempo de evolução menor.
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2 QUANTUM SPEED LIMITS E A GEOMETRIA DO ESPAÇO DE ESTADOS

Neste capítulo desenvolveremos o entendimento dos QSLs sobre alicerces geométricos. Iremos
explorar os resultados seminais que motivaram o estudo por QSLs geométricos (§2.1), explorar a classe
de infinitas métricas possíveis para distinguibilidade de estados quânticos no espaço de estados por
meio do teorema MCP (§2.2), e finalmente, definir os QSLs geométicos e explorar a dinâmica unitária
por meio de resultados analíticos para as métricas de Fisher, Wigner-Yanase (§2.3).

2.1 Resultados seminais

O ponto de partida para a busca por Quantum Speed Limits é a tentativa de dar uma interpreta-
ção clara ao princípio de incerteza energia-tempo, pois em geral não é possível definir um operador
tempo e utilizar o princípio de incerteza ∆A∆B ≥ |〈[A,B]〉|/2.

O resultado de Mandelstam e Tamm [1], válido para dinâmicas unitárias independentes do
tempo, utiliza o teorema de Ehrenfest, d/dt〈A〉 = i

h
〈[H,A]〉. Assim, pode ser feita a conexão da

relação de comutação [H,A] com a taxa de variação do valor esperado do operador A. Considere um
estado inicial |ψ0〉 e um estado evoluído |ψτ 〉 = Uτ |ψ0〉. Defina um projetor sobre o estado inicial A =

|ψ0〉 〈ψ0| que possui a propriedade de idempotência A2 = A. Podemos escrever ∆A :=
√
〈A〉 − 〈A〉2,

com o valor esperado sendo tomado com 〈A〉 := 〈ψτ |A |ψτ 〉 = 〈ψ0|A |ψ0〉. A partir da relação de
incerteza, obtemos:

∆H ≥ ~
2

∣∣∣∣∣ d〈A〉/dt√
〈A〉 − 〈A〉2

∣∣∣∣∣ = ~
∣∣∣∣ ddt arccos(| 〈ψ0|ψ(t)〉 |)

∣∣∣∣ (2.1)

Utilizando a desigualdade
∫ b
a
|f(t)|dt ≥ |

∫ b
a
f(t)dt| e integrando de 0 a t = τ , obtemos:

τ ≥ ~
∆H

arccos(| 〈ψ0|ψτ 〉 |) (2.2)

Chamamos o lado direito da equação acima de τQSL e estabelece um limite inferior para o tempo
de evolução do estado |ψ0〉 ao estado |ψτ 〉. A equação 2.2 nos informa que é possível que haja uma
dinâmica “mais eficiente” que liga estes dois estados, e esta dinâmica é aquela que satura a desigualdade.
A dependência em ∆H nos revela uma característica importante dos QSLs em geral: o limite inferior
em τ depende fortemente dos recursos físicos do sistema que estamos lidando. Neste caso, dentro da
família de hamiltonianas com desvio padrão ∆H fixo, o QSL de MT nos dá um limite na rapidez da
evolução entre dois estados. Assim, os QSLs nos permite explorar a otimização de processos físicos
que possuem vínculos em algumas quantidades físicas. Convém dois exemplos: (i) Estado inicial |ψ0〉
autoestado de energia, ∆H = 0 e portanto τQSL ≥ ∞, que reflete o fato que não existe hamiltoniana
que evoluirá |ψ0〉 para o estado alvo |ψτ 〉; (ii) Desvio padrão ∆H →∞ gera um τQSL → 0 e portanto,
poderíamos escolher uma dinâmica em que a evolução ocorra arbitrariamente rápida.

Em contrapartida, o resultado de Margolus e Levitin [3], 53 anos depois do QSL de MT, erradica
a dependencia do QSL no desvio padrão da hamiltoniana e deriva um novo limite, agora em função do
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valor esperado de H . Mais uma vez, considere uma dinâmica unitária gerada por uma hamiltoniana
H independente do tempo, agora com autovalores positivos. Tome um estado |ψ0〉 =

∑
n cn |En〉

decomposto nos autoestado da energia e tome sua evolução temporal |ψτ 〉 =
∑

n cn exp
(
− iEnτ

~

)
|En〉.

Consideraremos o caso em que 〈ψ0|ψτ 〉 = 0, ou seja, estado inicial e alvo ortogonais, assim tanto a
parte real quanto imaginária desta quantidade são nulas.

Re(〈ψ0|ψτ 〉) =
∑
n

|cn|2 cos

(
Enτ

~

)
= 0

Im(〈ψ0|ψτ 〉) =
∑
n

|cn|2 sin

(
Enτ

~

)
= 0

(2.3)

Usando a desigualdade cosx ≥ 1− 2
π
(x+ sinx) ∀x ≥ 0 na primeira das 2.3, encontramos:

τ ≥ π~
2〈H〉

(2.4)

É importante notar que este resultado vale apenas para evolução entre estados ortogonais. Desta vez o
limite no tempo de evolução é sobre hamiltonianas com o mesmo valor médio 〈H〉 para suas dinâmicas.
Além disso, o resultado de ML é completamente independente do QSL de MT, ou seja, é impossível
obter um a partir do outro. O fato de existirem dois limites independentes para o tempo de evolução
entre dois estados não constitui um paradoxo, uma vez que os limites são sobre famílias de dinâmicas
diferentes — ∆H fixo ou 〈H〉 fixo. De fato, Giovannetti, Lloyd e Maccone, em 2003, [6] mostraram
numericamente que, dado estes vínculos energéticos, o tempo de evolução mínimo entre estados mistos,
não-ortogonais, sob dinâmica unitária é dado por:

τQSL = max

{
α(ε)

π~
2∆H

, β(ε)
π~

2〈H〉

}
(2.5)

Com ε := F (ρ0, ρτ ) a fidelidade de Uhlmann-Jozsa entre os estados inicial e final, β(ε) = 2 arccos(
√
ε)/π

e α(ε) uma função que deve ser minimizada.

Além disso, um resultado similar para estados puros e ortogonais foi alcançado por Levitin
e Toffoli [7]. O trabalho destes autores corrobora o descobrimento de Giovannetti et al. dando bases
mais firmes a unificação do QSL de MT e ML:

τQSL = max

{
π~

2∆H
,
π~

2〈H〉

}
(2.6)

O primeiro passo no sentido de uma geometrização dos QSLs foi dado por Anandan e Aharonov
[2] tratando sistemas físicos puros com a hamiltoniana dependente do tempo evoluindo de acordo com
a equação de Schrödinger. Antes disso, iremos revisar alguns conceitos matemáticos irão ser utilizados
ao longo desta monografia.

Uma distância entre os pontos de um conjunto {a1, a2, . . . , an} deve satisfazer (i) Positividade
`(ai, aj) ≥ 0; (ii) Simetria `(ai, aj) = `(aj, ai); (iii) Desigualdade triangular `(ai, ak) ≤ `(ai, aj) +
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`(aj, ak). Estamos interessados em distâncias Riemannianas, que podem ser obtidas a partir da
integração sobre uma curva da métrica Riemanniana. A métrica, por sua vez, é uma forma diferencial
ds2 que indica como a distância entre pontos vizinhos devem ser medidos. Portanto, a distância entre
dois pontos x e y induzidas pela métrica ds2 ao longo do caminho γ (com x e y seus extremos) é
dado pela integral `(x, y) :=

∫
γ
ds. A curva que minimiza o valor de ` é chamada de geodésica e

indicaremos-a por L. Ao longo deste trabalho usaremos os termos “métrica” e “métrica Riemanniana”
intercambiavelmente.

Gostaríamos de descrever uma distância entre o estado inicial |ψ0〉 e o estado alvo |ψτ 〉 Seja a
diferencial de um vetor de estado dado por |dψ〉 = (∂ |ψ〉 /∂θ)dθ onde θ é um parâmetro do estado |ψ〉.
Uma métrica natural para o espaço de Hilbert é construída a partir da norma desta diferencial, ou seja,
ds2 = 〈dψ|dψ〉. Entretanto, essa métrica é não nula para estados colineares (|ψ0〉 e eiν |ψ0〉, ν ∈ R),
que são fisicamente equivalentes (representam o mesmo estado). Precisamos de uma métrica que não
distingua vetores colineares. Anandan e Aharonov fazem isso por meio da métrica de Fubini-Study no
espaço projetivo:

ds2 =
〈dψ|dψ〉
〈ψ|ψ〉

− | 〈ψ|dψ〉 |
2

〈ψ|ψ〉
(2.7)

Resumidamente, estados colineares definem retas complexas passando pela origem do espaço de
Hilbert e o conjunto destas retas gera o espaço projetivo. A relação |dψt〉 = |ψt+dt〉 − |ψt〉 e a equação
de Schrödinger (i~dt |ψt〉 = Ht |ψt〉) nos dá:

ds2 =
dt2

~2
∆H2

t (2.8)

com ∆Ht :=
√
〈ψt|H2

t |ψt〉 − 〈ψt|Ht |ψt〉2 o desvio padrão da hamiltoniana.

Assim, o comprimento de qualquer trajetória entre os estados |ψ0〉 e |ψτ 〉 será dado pela
integração do elemento de linha ds, isto é, `(|ψ0〉 , |ψτ 〉) =

∫
γ
ds = ~−1

∫ τ
0

∆Htdt. O QSL surge
notando que qualquer comprimento de curva será maior ou igual a geodésica:

L(|ψ0〉 , |ψτ 〉) ≤ `(|ψ0〉 , |ψτ 〉) (2.9)

Definindo a média temporal do desvio padrão como a quantidade ∆Ht = 1
τ

∫ τ
0
dt∆Ht, a equação

acima pode ser escrita como:

τ ≥ ~
∆Ht

L(|ψ0〉 , |ψτ 〉) (2.10)

É possível encontrar uma fórmula analítica para a distância geodésica na métrica de Fubini-Study,
dada por L(|ψ0〉 , |ψτ 〉) = arccos | 〈ψτ |ψ0〉 |, assim, o resultado de Anandan e Aharonov é:

τ ≥ ~
∆Ht

arccos | 〈ψτ |ψ0〉 | (2.11)

Mais uma vez, o limite inferior no tempo de evolução é dependente dos recursos energéticos
disponíveis, expressado, desta vez, por ∆H . Ademais, este resultado recobra o de MT para hamil-
tonianas independentes do tempo. O resultado acima revela uma característica singular dos QSLs
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geométricos: o menor tempo de evolução se dará com a saturação da 2.9, ou seja, se o sistema evoluir
sobre uma geodésica. É sobre estas águas que o resultado de Pires [5] se banha, que será explorado no
restante deste capítulo.

2.2 Medidas de distinguibilidade e teorema MCP

O resultado de Anandan e Aharonov fundamenta-se sobre uma importante tarefa na Informação
Quântica: a análise da distinguibilidade entre estados quânticos. Em especial, a chamada geometria
de informação pretende abordar este problema sobre o viés da geometria diferencial. Posto que tanto
o conjunto de distribuição de probabilidades sobre o espaço de fases clássico quanto o conjunto de
operadores densidade no espaço de Hilbert geram variedades Riemannianas, o problema de distinção
de estados pode ser quantizado em medida de distâncias a partir de métricas definidas nestes espaços.

Exige-se que limitemos as métricas de interesse às métricas contrativas, uma vez que a aplicação
de um mapa f sobre dois elementos de uma superfície Riemmaniana clássica ou quântica x e y, introduz
ruído que torna estes estados mais similares devido a perda de informação. Desta forma, a distância
d induzida por uma métrica é tal que d(f(x), f(y)) ≤ d(x, y). Para o caso clássico, a dinâmica de
uma distribuição discreta ~p = {p1, p2, . . . , pd} no espaço de probabilidades P é dada pela aplicação
de um mapa estocástico. O teorema de Chentsov assegura que a chamada métrica de Fisher-Rao é
a única escolha de métrica contrativa possível entre duas distribuições de probabilidades. Isto é, a
distinguibilidade entre os estados ~p e ~p + d~p, onde d~p = {dp1, dp2, . . . , dpd}, é dada pela métrica
abaixo.

ds2 =
1

4

d∑
j=1

(dpj)
2

pj
(2.12)

No caso quântico a dinâmica é dada por mapas CPTP (Completely Positive and Trace Preserving)
aplicados em operadores densidade no espaço de Hilbert. Agora a escolha de métrica contrativa não é
única pois, com efeito, há infinitas métricas sobre os operadores densidade. Desta vez, este resultado é
assegurado pelo teorema de Morozova, Chentzov e Petz (MCP), que é enunciado logo abaixo, sem
prova.

Teorema de Morozova, Chentzov e Petz (MCP). Seja H o espaço de Hilbert de dimensão finita d

e seja S ⊂ H o conjunto de operadores densidade ρ que satisfazem as seguintes propriedade: (i)

Hermiticidade ρ = ρ†; (ii) Unitaridade do traço Tr(ρ) = 1; (iii) ρ é semipositivo definido ρ ≥ 0.

Considere um operador densidade ρ e dρ, tais que dρ = dρ† e Tr(dρ) = dTr(ρ) = 0. Além disso,

leve em conta a decomposição espectral ρ =
∑d

j=1 |j〉 〈j| do operador densidade, então a métrica

Riemmaniana contrativa no espaço de estados, ou seja, a distância entre os operadores vizinhos ρ e
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ρ+ dρ, é dada pela fórmula:

ds2 =
1

4

 d∑
j=1

| 〈j| dρ |j〉 |2

pj
+ 2

2∑
j,l=1
j<l

cf (pj, pl)| 〈j| dρ |l〉 |2

 (2.13)

Onde

cf (x, y) :=
1

yf(x/y)
(2.14)

e f(u) pertence a classe de funções de Morozova-Chentzov (MC), ou seja, funções f(u) : R+ → R+

com as propriedades abaixo:

(i) Para operadores densidade ρ e σ tais que ρ ≤ σ, então f(ρ) ≤ f(σ)

(ii) f(u) = uf(1/u)

(iii) f(1) = 1

A equação 2.13 tem como característica principal a separação entre as populações e coerências
dos estados envolvidos. O primeiro termos depende das populações de ρ e dρ e é facilmente reco-
nhecível como a métrica de Fisher clássica na Eq. 2.12. O segundo termo conta com a contribuição
das coerências de dρ na base dos autoestados de ρ e é responsável pela não unicidade da métrica. É
importante frisar que este termo é puramente quântico.

Note que este teorema lida com operadores densidades, portanto, para fazer a conexão com a
métrica de Fubini-Study para funções de estado, discutida na seção passada, recorremos ao trabalho de
1996 de Petz e Sudár. Um dos resultados principais deste trabalho é o colapso de todas as métricas
contrativas em um múltiplo da métrica de Fubini-Study no caso de estados puros. De todo modo,
focaremos em estados mistos, já que são as coerências que permitem a infinidade de métricas no
espaço de estados.

Outra propriedade importante é que a Eq. 2.13 é uma correspondência unívoca com as funções
de MC. Existe uma desigualdade sobre essa classe de funções, em que, para f(u) uma função de MC
arbitrária vale fmin(u) ≤ f(u) ≤ fmax(u),onde a função mínima é dada por:

fmin(u) =
2u

1 + u
(2.15)

E a função máxima é:

fQF (u) := fmax(u) =
1 + u

2
(2.16)

Neste trabalho estaremos interessados em apenas duas destas funções. A primeira é a fmax cuja métrica
correspondente é a métrica de Fisher Quântica (QF). A segunda está relacionada com a métrica de
Wigner-Yanase (WY) e é dada por.

fWY (u) :=
1

4
(
√
u+ 1)2 (2.17)
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A escolha destas duas funções se deve ao fato de serem as únicas com expressões analíticas para a
geodésica entre dois operadores densidades. Encontrar a geodésica é, em geral, uma tarefa complexa.
Entretanto vale notar que, em decorrência do Teorema de MCP, quaisquer outras escolhas de funções
de MC seriam válidas para as análises subsequentes desde que suas geodésicas sejam calculáveis. Além
disso, as duas métricas escolhidas são as mais extensivamente exploradas na literatura de informação
quântica, e portanto, possui aplicações já conhecidas.

A geodésica associada a métrica de Fisher Quântica é conhecida como ângulo de Bures e é
dada por:

LQF (ρ1, ρ2) = arccos
(√

F (ρ1, ρ2)
)

(2.18)

Onde F é a fidelidade Uhlman-Jozsa:

F (ρ1, ρ2) :=

(
Tr

[√√
ρ1ρ2
√
ρ1

])2

(2.19)

Por outro lado, a geodésica associada a métrica de Wigner-Yanase é dada por:

LWY (ρ1, ρ2) = arccos(A(ρ1, ρ2)) (2.20)

Em que A é chamada afinidade quântica:

A(ρ1, ρ2) := Tr(
√
ρ1
√
ρ2) (2.21)

2.3 QSLs geométricos

O resultado principal do trabalho de Pires [5] é apresentado a seguir. Considere um estado ρλ
parametrizado pelo conjunto λ = {λµ}µ=1,...,r que variam analiticamente. Suponha uma dinâmica que
varia o conjunto de parâmetros λ de um estado inicial ρ0 := ρλI a um estado final ρλF . A variação
dos parâmetros irá descrever uma curva γ no espaço de estados cujo comprimento será denotado
por `γ(ρλI , ρλF ). De acordo com o teorema de MCP, há uma infinidade de métricas Riemmanianas
contrativas — dependentes da escolha da função de f de MC — cuja integração entre os estados inicial
e final sobre o conjunto de parâmetros λ nos dará o comprimento citado, ou seja, `fγ(ρλI , ρλF ) =

∫
γ
ds,

onde ds2 = gfρλ(dρλ, dρλ) dada pela Eq. 2.13.

Vamos considerar ρλ + dρλ, o estado gerado após uma variação infinitesimal dos parâmetros λ
a partir do estado ρλ. O operador dρλ é hermitiano, de traço nulo, e dado por:

dρλ =
r∑

µ=1

∂µρλdλµ (2.22)

onde ∂µρλ = ∂ρλ
∂λµ

. É justamente a norma deste operador, ||dρλ||, que define a distância ds entre os
estados ρλ e ρλ + dρλ, isto é, ds2 = ||dρλ||2. Focaremos agora em calcular os termos | 〈j| dρλ |j〉 |2 e
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| 〈j| dρλ |l〉 |2, que aparecem na Eq. 2.13. Suponha a decomposição espectral de ρλ como:

ρλ =
∑
j

pj |j〉 〈j| (2.23)

Portanto:
∂µρλ =

∑
j

(∂µpj) |j〉 〈j|+ pj(∂µ |j〉) 〈j|+ pj |j〉 (∂µ 〈j|) (2.24)

já que os autovalores e autovetores de ρλ dependem do conjunto de parâmetros λ. Utilizando a
identidade (∂mu 〈j|l〉) = −〈j| ∂µ |l〉, decorrente de 〈j|l〉 = δjl, segue que:

〈j| ∂µρλ |l〉 = δjl∂µpj + (pl − pj) 〈j| ∂µ |l〉 (2.25)

Finalmente, a partir das Eqs. 2.22 e 2.25

〈j| dρλ |l〉 =
r∑

µ=1

〈j| ∂µρλ |l〉 dλµ

=
r∑

µ=1

[
δjl∂µpj + i(pj − pl)Aµjl

]
dλµ

(2.26)

Onde Aµjl := i 〈j| ∂µ |l〉. Fazendo j = l temos:

| 〈j| dρλ |j〉 |2 =
r∑

µ,ν=1

∂µpj∂νpjdλµdλν (2.27)

Para j 6= l ficamos com:

| 〈j| dρλ |l〉 |2 =
r∑

µ,ν=1

(pj − pl)2AµjlA
ν
ljdλµdλν (2.28)

As duas equações acima na 2.13 nos dão:

ds2 =
r∑

µ,ν=1

gfµνdλµdλν (2.29)

onde gfµν = Fµν + Qfµν . O termo Fµν é comum a todas as métricas Riemmanianas contrativas no
espaço de estados e se refere a contribuição das populações de ρλ:

Fµν :=
1

4

d∑
j=1

∂µpj∂νpj
pj

(2.30)

O termo Qfµν é a contribuição das coerências de dρλ e, por depender da escolha da função f de MC,
corresponde a propriedade de não-unicidade das métricas no espaço de estados:

Qfµν :=
1

2

d∑
j,l=1
j<l

cf (pj, pl)(pj − pl)2AµjlA
ν
lj (2.31)
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Consideremos que o conjunto de parâmetros λ é dependente do tempo. Para uma evolução dada para
tempo t ∈ [0, τ ], λ→ λ(t) o comprimento da curva γ descrito no espaço de estados devido a evolução
do operador densidade do seu estado inicial ρ0 := ρλI := ρλ(0) até o estado final ρτ := ρλF := ρλ(τ)

será dado por:

`fγ(ρ0, ρτ ) =

∫
γ

ds =

∫ τ

0

dt
ds

dt
=

∫ τ

0

dt

√√√√ r∑
µ,ν=1

gfµν
dλµ
dt

dλν
dt

(2.32)

O comprimento do caminho γ que liga os estados inicial e final deve ser, por definição, maior ou igual
que a distância geodésica Lf (ρ0, ρτ ) que liga estes estados. Este é o resultado principal que define os
QSLs geométricos:

Lf (ρ0, ρτ ) ≤ `fγ(ρ0, ρτ ) (2.33)

O limite inferior para o tempo de evolução τ deverá ser obtido com a solução da desigualdade acima a
partir de expressões analíticas para `fγ(ρ0, ρτ ) e Lf (ρ0, ρτ ). Sendo assim, a saturação da desigualdade
se dá apenas se a evolução ocorre sobre a geodésica, tal qual o QSL obtido por Anandan e Aharonov
obtido na seção 2.1.

Convém lembrarmos que, assim como o comprimento `fγ(ρ0, ρτ ) depende da escolha da
função f de MC, a distância geodésica Lf (ρ0, ρτ ) também, nos fornecendo uma infinidade de QSLs.
Para buscarmos o QSL mais tight, introduzimos a distância relativa δfγ , que quantifica o quanto o
comprimento `fγ(ρ0, ρτ ) difere de Lf (ρ0, ρτ ):

δfγ :=
`fγ(ρ0, ρτ )− Lf (ρ0, ρτ )

Lf (ρ0, ρτ )
(2.34)

Assim, para uma dada dinâmica, a métrica mais tight é aquela que minimiza a quantidade δfγ , pois o
comprimento da curva γ gerada pela dinâmica é o mais próxima possível da distância geodésica relativa
a esta métrica. Como explicitado na seção 2.2, não há expressões analíticas para Lf (ρ0, ρτ ) para todas
as métricas derivadas da classe de funções de MC, exceto para as métricas de Fisher Quântica e de
Wigner-Yanase. Nas análises subsequentes, exploraremos qual destas métricas é a mais tight para uma
dada dinâmica, ou seja, se δQF ≤ δWY , ou se δWY ≤ δQF .

Até agora interpretamos os QSLs geométricos seguindo a linha de raciocínio a seguir: (i) Tome
uma dinâmica arbitrária (unitária ou não-unitária) e deixe um operador densidade evoluir de um estado
inicial ρ0 a um estado alvo ρτ durante uma quantidade de tempo τ (ii) Pela 2.33, o comprimento
`fγ(ρ0, ρτ ) da trajetória descrita no espaço de estados é sempre maior ou igual a distância geodésica
Lf (ρ0, ρτ ), deve existir uma outra dinâmica que leva ρ0 a ρτ durante uma quantidade de tempo
τQSL ≤ τ (iii) O caminho que esta nova dinâmica traça é uma geodésica (iv) Para encontrar o menor
τQSL possível entre estes dois estados, é necessário minimizar a quantidade δfγ dada pela 2.34.

O raciocínio acima ainda não evidencia a potencialidade dos QSL na otimização de dinâmicas
com vínculos sobre recursos físicos. Faremos isso para dinâmicas unitárias. Seja ρ0 um estado inicial
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e uma hamiltoniana Ht dependente do tempo, que gera a dinâmica. O estado evoluído será dado
por ρt = Utρ0U

†
t , onde o operador unitário Ut é encontrado a partir da equação de Schrödinger

i~∂tUt = HtUt. Como a dinâmica é parametrizada apenas pelo tempo, ou seja λ = {t}, ficamos com:

Ft =
1

4

d∑
j=1

(
dpj
dt

)2
1

pj
, Qft =

1

2

d∑
j,l=1
j<l

cf (pj, pl)(pj − pl)2AtjlAtlj (2.35)

Os autovalores pj do estado inicial sob evolução unitária são constantes, portanto Ft = 0.
Além disso, podemos ver que, para j 6= l, Atjl = (1/~) 〈j| δHt |l〉, com δHt := Ht − 〈Ht〉I . Portanto,
o elemento de linha a ser integrado é:

gft =
1

2~2

∑
j,l=1
j<l

cf (pj, pl)(pj − pl)2v 〈j| δHt |l〉 〈l| δHt |j〉 (2.36)

Façamos agora a escolha da função de MC dada pela Eq. 2.16, que corresponde a métrica de Fisher
Quântica. A Eq. 2.14 fica cf (x, y) = 2/(x+ y) e daí a Eq. 2.36 se resume em:

gQFt =
1

2~2

∑
j,l=1
j<l

(pj − pl)2

pj + pl
v 〈j| δHt |l〉 〈l| δHt |j〉

≤
(pj−pl)2

pj+pl
≤pj+pl

1

2~2

∑
j,l=1
j<l

(pj + Pl)v 〈j| δHt |l〉 〈l| δHt |j〉
(2.37)

A análise da soma acima nos gQFt ≤ 1
~2 (∆Ht)

2, onde ∆Ht =
√
〈H2

t 〉 − 〈Ht〉2 é o desvio padrão da
hamiltoniana calculada para o estado ρt. Tirando a raiz quadrada e integrando a expressão acima,
ficamos com:

`QF (ρ0, ρτ ) ≤
1

~

∫ τ

0

dt∆Ht (2.38)

O nosso QSL poderá ser obtido utilizando a Eq. 2.33:

LQF (ρ0, ρτ ) ≤
1

~

∫ τ

0

dt∆Ht (2.39)

Onde LQF (ρ0, ρτ ) é dado pela 2.18. Mais evidentemente, definindo a média temporal do desvio
padrão como ∆Ht := 1

τ

∫ τ
0
dt∆Ht, finalmente observamos os QSLs como uma poderosa ferramenta

na otimização de dinâmicas com limitações sobre seus recursos físicos:

τ ≥ ~
∆Ht

LQF (ρ0, ρτ ) (2.40)

Por outro lado, a escolha da métrica de Wigner-Yanase, dada pela função de MC da Eq. 2.17, ao
realizarmos cálculos similares1 irão nos dar:

τ ≥ ~
√

2
√
I
LWY (ρ0, ρτ ) (2.41)

1 Consulte [5] e [8] para mais detalhes.
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Onde LWY é dado pela Eq. 2.20, com
√
I := 1

τ

∫ τ
0
dt
√
I(ρt, Ht), e onde I(ρt, Ht) é chamada de

Informação de Wigner-Yanase. Aqui podemos ver que os recursos físicos podem ser informacionais e
não apenas energéticos, como é o caso da Eq. 2.40.
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3 ESTUDO DE CASO: DEPHASING PARA UM SISTEMA DE 2 NÍVEIS

Seguiremos, neste capítulo, com uma aplicação do maquinário teórico adquirido na seção
anterior realizando uma análise do QSL para uma dinâmica não-unitária, no contexto de sistemas
quânticos abertos. Faremos primeiramente uma descrição do modelo de dephasing pra um qubit (§3.1)
e em seguida discutiremos os QSLs para o qubit e para o ambiente (§3.2). Convém deixar claro que o
objetivo das análises subsequentes é a busca de possíveis correlações qualitativas entre os QSLs mais
tight para dois sistemas interagentes (qubit e ambiente).

3.1 Descrição do modelo

Focaremos no modelo de atenuação de fase paralela, ou dephasing, para um qubit (sistema
de 2 níveis) em um campo de bósons (ambiente). Justifica-se a escolha deste modelo por ele possuir
uma solução analítica e apresenta decoerência sem que ocorra dissipação de energia, podendo assim,
explorar os efeitos da decoerência pura. A dinâmica do qubit + ambiente é dada por [9]:

H =
1

2
σzω0 +

∑
k

b†kbkωk︸ ︷︷ ︸
H0

+
∑
k

σz

(
gkb
†
k + g∗kbk

)
︸ ︷︷ ︸

Hint

(3.1)

Aqui, bk e b†k são os operadores aniquilação e criação para o k-ésimo modo do campo, respectivamente.
Seja |n〉k o estado que indica que o modo k possui número de ocupação n, portanto bk |n〉k =
√
n |n− 1〉k e b†k |n〉k =

√
n+ 1 |n+ 1〉k. As relações de comutação são

[
bk, b

†
k′

]
= δk,k′ e

[
b†k, b

†
k′

]
=

[bk, bk′ ] = 0. O termo H0 nos dá a evolução livre do qubit e do ambiente e o termo Hint descreve
a interação entre estes sistemas, com gk as constantes de acoplamento. Note que, pelo fato de Hint

comutar comH0, o termo de interação não gera transições de níveis de energia no qubit, o que evidencia
que, sob esta interação, não há troca de energia entre o qubit e o ambiente. A evolução temporal do
sistema qubit + ambiente é dada por um operador unitário. Convém enunciar-lhe na versão de interação,
onde ele toma a forma:

Ũ (t) = exp

(
1

2
σz
∑
k

αk (t) b†k − α
∗
k (t) bk

)
(3.2)

com αk (t) := 2gk(1− eiωkt)/ωk. Tome |ψ〉 um estado qualquer do ambiente. A atuação do operador
da Eq. 3.2 é descrita por:

Ũ (t) |0〉 ⊗ |ψ〉 = |0〉 ⊗
∏
k

D

(
−1

2
αk (t)

)
|ψ〉 (3.3)

Ũ (t) |1〉 ⊗ |ψ〉 = |1〉 ⊗
∏
k

D

(
+

1

2
αk (t)

)
|ψ〉 (3.4)
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onde o operador deslocamento D(α) = exp
(
b†α− bα∗

)
, unitário, que obedece a relação D† (α) =

D−1 (α) = D (−α) gera estados coerentes ao ser aplicado em um estado de vácuo 1.

Com estes elementos postos, podemos calculas a evolução tanto para o qubit, quanto para
o ambiente. Seja %(0) um estado inicial do sistema conjunto (qubit + ambiente), o estado evoluído
será dado por %(0) := U (t) % (0)U † (t) onde U (t) = e−iH0tŨ (t) é o operador unitário de evolução
temporal na versão de Schrödinger. Assumiremos que nosso estado inicial será um produto tensorial
entre o qubit e os estados do campo, % (0) = ρ (0) ⊗

∏
k RkT , ou seja, o qubit e o ambiente estão

descorrelacionados. Aqui, RkT é a matriz densidade canônica para o modo k do campo, RkT :=(
1− e−βωk

)∑
n e
−βωkn |n〉 〈n|.

A evolução do qubit é dada tomando o traço parcial nos graus de liberdade do ambiente, isto
é, ρ(t) = TrR %(t). A análise dos elementos de matriz de ρ(t), nos dá a importância deste modelo.
Segue que as populações do qubit — diagonais — se mantém constantes ao longo da evolução, ou seja,
ρ00(t) = ρ00(0) := 〈0| ρ(0) |0〉 e ρ11(t) = ρ11(0) := 〈1| ρ(0) |1〉. Por outro lado, as coerências — não
diagonais — apresentam um fator de atenuação, ρ10(t) = ρ∗01(t) = ρ10(0) := 〈1| ρ(0) |0〉 e−Γ(t), com:

Γ (t) =
∑
k

4|gk|2

ω2
k

(1− cos(ωkt)) coth

(
βωk

2

)
(3.5)

Desta forma, para um fator de atenuação monotonicamente crescente, os termos não diagonais são
suprimidos exponencialmente de forma que, para tempo infinito, o estado evoluído está em um estado
incoerente na base dos autoestados de σz, ρ(t → ∞) = ρ00 |0〉 〈0| + ρ11 |1〉 〈1|, perdendo qualquer
informação acerca das coerências.

A diagonalização do qubit é feita utilizando a representação de Bloch, ρ = (I+~r ·~σ)/2. O vetor
de Bloch para o estado evoluido ρ(t) é dado por ~rt0{qt sin θ0 cos(φ0 + ω0t), qt sin θ0 sin(φ0 + ω0t),

cos θ} com qt := exp
(
−dΓ(t)

dt
t
)

. A diagonalização deste estado nos dá ρ(t) =
∑

j=± pj |±〉 〈±| onde:

p± =
1

2
(1± r0ξt); |±〉 =

1

N±

[
(cos θ0 ± ξ(t)) |0〉+ ei(φ+ω0t)qt sin θ0 |1〉

]
(3.6)

com ξ(t) :=
√

cos2 θ0 + q2
t sin2 θ0 e o fator de normalização N± :=

√
(cos θ0 ± ξt)2 + q2

t sin θ0

De maneira similar, a evolução do ambiente é obtida tomando o traço parcial sobre o qubit, i.e.,
ρR(t) = TrQ %(t):

ρR(t) = ρ00 (0)
∏
k

e−ib
†
kbkωktD

(
−1

2
αk

)
RkTD

(
1

2
αk

)
eib
†
kbkωkt

+ ρ11 (0)
∏
k

e−ib
†
kbkωktD

(
1

2
αk

)
RkTD

(
−1

2
αk

)
eib
†
kbkωkt

(3.7)

1 Uma discussão mais aprofundada acerca do operador deslocamento — como suas propriedades e identidades
— pode ser encontrado em [10]
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Este resultado já nos mostra que explorar a dinâmica de sistemas com infinitos graus de liberdade
pode se tornar uma tarefa rapidamente complexa. Restringiremos nosso modelo, exato até então, por
meio de uma aproximação de acoplamento fraco, onde manteremos apenas termos lineares em gk.
Observamos que a Eq. 3.7 depende do acoplamento apenas via operador deslocamento, de forma que
devemos considerar a aproximação linear D(αk/2) = (b†kαk − bkα∗k)/2, nos dando:

ρR(t) = ρR(0) + (ρ11(0)− ρ00(0))
∏
k

(1− e−βωk)[
sinh

(
βωk

2

)(
αk(t)e

−iωkte−βωk/2b†k + α∗k(t)e
iωkteβωk/2bk

)]
exp
(
−βωkb†kbk

) (3.8)

A aproximação gera esta forma mais simples, onde fica evidente o estado evoluído como o estado inicial
+ uma perturbação. A diagonalização segue da teoria de perturbação de primeira ordem, que seleciona
todos os termos lineares no acoplamento. Sendo |n〉 =

∏
k |n〉k, a correção para os autovalores é dada

por 〈n|Perturbação |n〉 = 0 pois k 〈n| bk |n〉k = k 〈n| b†k |n〉k = 0, portanto os autovalores são dados
por Pn =

∏
k P

k
n onde P k

n é o autovalor de RkT :

P k
n = (1− eβωk)e−βωkn (3.9)

Já os autoestados serão dados por |ψn〉 =
∏

k

∣∣ψkn〉 com:

∣∣ψkn〉 = |n〉k + (ρ11(0)− ρ00(0))
e−iωkt − 1

ωk

(
gk
√
n+ 1 |n+ 1〉k − g

∗
k

√
n |n− 1〉k

)
(3.10)

Juntos, estes resultados satisfazem ρR(t) |ψn〉 = Pn |ψn〉 até até a primeira ordem no acoplamento.

3.2 Investigação dos Quantum Speed Limit

Esta seção contém os resultados originais desta tese. Nos voltamos à análise dos QSL tanto
para o qubit quanto para o ambiente. Desejamos obter uma relação qualitativa entre os QSLs mais
tight tanto para o qubit, quanto para o ambiente. Recordamos que, de acordo com o teorema de MCP
enunciado na §2.2, há uma infinidade de métricas Riemmanianas no espaço gerado pelos operadores
densidade. Discutimos que apenas duas métricas nos interessa (Fisher Quântica e Wigner-Yanase) pois
são as únicas que possuem uma expressão analítica para suas distâncias geodésicas. Nossa análise
buscará a métrica mais tight entre estas duas métricas, ou seja se δQF ≤ δWY ou se δWY ≤ δQF com
as distâncias relativas δfγ dadas pela Eq. 2.34.

Algumas considerações precisam ser feitas. A nossa análise se restringirá a apenas um modo
do ambiente (k = 1). Por certo, este modelo microscópico de dephasing vale neste caso, entretanto,
da mesma forma que se observa a perda coerência, há o refluxo de informação de volta ao sistema,
reestabelecendo a coerência (vide a periodicidade da 3.5 para k = 1). De certa forma, nosso modelo
se afasta ligeiramente da análise feita por Pires [5], que utiliza mapas dinâmicos para caracterizar o
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canal de dephasing 2. Portanto, nos limitamos ao regime de tempo em que há decoerência para que os
resultados descritos a seguir sejam complementares a [5].

Para o qubit, utilizando a decomposição espectral explicitada na seção passada, as Eqs. 2.35
ficam:

Ft =
r0q

2
t sin4 θ0

4ξ2
t (1− r2

0ξ
2
t )

(
dqt
dt

)2

(3.11)

Qft =
r2

0 sin2 θ0cf (p+, p−)

8ξ2
t

[
ω0ξ

2
t q

2
t + cos2 θ

(
dqt
dt

)2
]

(3.12)

As funções cf (p+, p−) dependem da escolha das funções de MC. Para a métrica de Fisher e de
Wigner-Yanase, respectivamente dadas pelas funções das Eqs. 2.16 e 2.17, temos que:

cQF (p+, p−) = 2; cWY (p+, p−) =
8(√

1− ξtr0 +
√

1 + ξtr0

)2 (3.13)

Entre o estado inicial e evoluído há uma curva γ ligando-os, e, dado uma escolha de função de MC, a

distância é lfγ =
∫ τ

0

√
Ft +Qft dt.

As distâncias geodésicas, por sua vez, possuem expressões analíticas para quaisquer par de
qubits e são dadas por3:

LQF (ρ(0), ρ(τ)) = arccos

√
1

2

[
1 + ~r0 · ~rτ +

√
(1 + |~r0|2)(1 + |~rτ |2)

]
(3.14)

LWY (ρ(0), ρ(τ)) = arccos

(
1

4

[
ε+0 ε

+
τ + ε−0 ε

−
τ

~r0 · ~rτ
|~r0||~rτ

|
])

(3.15)

onde ε±t :=
√

1 + |~rt| ±
√

1− |~rt|.

Seguiremos com a busca ao QSL mais tight para a evolução do qubit. Veja que se a métrica
de QF fornece o QSL mais tight que a métrica de WY, então devemos ter δQF ≤ δWY . Daí, segue a
desigualdade ∆ := LQF `WY − LWY `QF ≥ 0. Na Fig. 1 vemos que o valor do acoplamento é crucial
para a determinação do QSL mais tight. Ao passo que a força do acoplamento aumenta, saímos de
um regime em que a métrica mais tight em todo espaço de estado é a métrica de Fisher (Fig. 1(c)),
para o regime em que tal métrica é a de Wigner-Yanase (Fig. 1(a)). É importante notar que o trabalho
de Pires [5] evidencia que para o caso unitário, a métrica de QF é sempre mais tight que a de WY.
Assim, o acoplamento, mesmo com apenas um único grau de liberdade do ambiente, é suficiente para
o surgimento de QSLs mais tights.
2 De fato, a caracterização por mapas dinâmicos representa o comportamento do nosso modelo microscópico

para um número grande de modos de campo, cujas frequência de oscilação ωk variam linearmente, o
chamado banho Ôhmico

3 Uma derivação destas equações é encontrado no Apêndices C.5 e C.6 em [8]
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(a) (b) (c)

Figura 1 – Gráfico da quantidade ∆ = LQF `WY −LWY `QF em função r0 e θ0. Os parâmetros fixados
são β = ω0 = Ω = t = 1 com acoplamento (a) g = 1.5; (b) g = 0.5; (c) g = 0.0001.
Fonte: Elaborado pelo autor.

Podemos fazer uma análise similar para o ambiente, buscando o QSL mais tight em sua
evolução. Como os autovalores são independentes do tempo (Eq. 3.9), então Ft = 0 e o cálculo de Qf

t

para a métrica de QF e de WY, respectivamente, são:

QQFt = r2
0 cos2(θ0) tanh

(
βΩ

2

)
|g|2 −

16r4 cos4(θ0) cosh2
(
βΩ
2

)
sech(βΩ) sin2

(
Ωt
2

)
|g|4

Ω2
(3.16)

QWY
t = 2r2

0 cos2(θ0) tanh

(
βΩ

4

)
|g|2 −

16r4
0 cos4(θ0) sin2

(
Ωt
2

)
|g|4

Ω2
(3.17)

com Ω a frequência do grau de liberdade para o ambiente.

Para que a distância `fγ =
∫ τ

0

√
Ft +Qft dt esteja consistente com nossa aproximação linear no

acoplamento para o ambiente, devemos ficar apenas com os primeiros termos nas Eqs. 3.16 e 3.17. As
distâncias geodésicas, por sua vez, são calculadas numericamente. Na Figura 2 traçamos as distâncias
`fγ e Lf para as métrica de QF e WY, com o estado inicial do qubit (r0 = 1/4; θ = π/4) no intervalo
de tempo que ocorre decoerência do qubit.

Podemos, agora, fazer a análise de tightness das métricas para o ambiente. Mais uma vez, esta
análise se baseia em observar a positividade ou negatividade de ∆. Fazemos isso vendo a evolução
temporal de ∆ para o estado inicial do qubit r0 = 1/4; θ0 = π/4 e parâmetros fixados β = ω0 = Ω = 1.
Para o qubit (Fig. 3 (a)), observamos que ∆ é suave e sempre maior que zero. Situação oposta ocorre
para o grau de liberdade do ambiente (Fig. 3 (b)), onde não há uma evolução suave da quantidade
∆ que, por vezes, assume valores negativos. A quebra da suavidade pode estar associada a: (a)

quebra da aproximação linear no acoplamento, uma vez que as distâncias geodésicas são calculadas
numericamente, e (b) a baixa ordem de magnitude (10−15), próxima a precisão de máquina (10−16).
Portanto, não é possível estabelecer a métrica mais tight para a evolução do grau de liberdade do
ambiente sob as aproximações feitas e/ou traçar quaisquer especulações teóricas acerca de analogias e
correlações entre os QSLs e sistemas abertos evoluídos não-unitáriamente.
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Figura 2 – Evolução temporal para (a) comprimento `fγ da curva γ dada pela dinâmica, e (b) distância
geodésica entre o estado inicial e o estado evoluido por tempo t, ambas sob as métricas
de Fisher e Wigner-Yanase, com parâmetros β = Ω = t = 1 e estado inicial do qubit em
r0 = 1/4; θ0 = π/4. Fonte: Elaborado pelo autor.
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Figura 3 – ∆ = LQF `WY − LWY `QF em função do tempo para (a) o qubit (b) o grau de liberdade do
ambiente. Utiliza-se os parâmetros fixos β = ω0 = Ω = t = 1 e o estado inicial do qubit
em r0 = 1/4; θ0 = π/4. Fonte: Elaborado pelo autor.
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4 CONCLUSÃO

Neste trabalho exploramos o conceito de QSLs a partir de uma abordagem geométrica e
analisamos um exemplo de dinâmica não-unitária a fim de buscar uma interpretação mais profunda
dos QSLs nestas dinâmicas.

Construímos nossos QSLs geométrico a partir da robusta formulação promovida por Pires
[5], que explora a geometrização do espaço de estados na busca de uma infinidade de métricas
Riemmanianas contrativas no espaço de estados. Os QSLs geométricos são originários do fato da
distância geodésica constituir o menor comprimento possível dentre todas as curvas que ligam dois
estados (Eq. 2.33). Para cada métrica existe um QSL geométrico associado. Esta formulação permite a
generalização dos QSLs para quaisquer dinâmica — unitárias ou não. Por exemplo, para o caso unitário,
encontra-se a conexão entre o tempo mínimo de evolução e recursos informacionais e energéticos no
caso unitário.

O nosso caso de estudo é o modelo de dephasing, descrito na seção 3.1. Buscou-se encontrar a
métrica mais tight entre a de Fisher e de Wigner-Yanase, tanto para o qubit, quanto para o ambiente.
Assumiu-se um acoplamento fraco entre o qubit e um grau de liberdade do ambiente e, apesar de
encontrarmos resultados similares a de Pires para o qubit, a análise para o ambiente foi inconclusiva.
Naturalmente, indicamos que desenvolvimentos futuros na busca de interpretação para QSLs, baseadas
em limitações de recursos físicos em sistemas abertos (não-unitários) deveriam: (i) replicar a análise
feita neste trabalho com maior precisão de máquina ;(ii) buscar resultados analíticos, em regime de
acoplamento forte, para o modelo de dephasing; e (iii) explorar outros modelos de evolução não-
unitária. Assim, poderemos avançar o conceito de QSLs para conexões mais profundas com outras
áreas de desenvolvimento quântico.
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