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RESUMO

INAGAKI, J. H. M. O conceito de Quantum Speed Limits e a geometrizacao do espaco de
estados. Julho de 2021. 22p. Monografia (Trabalho de Conclusdo de Curso) - Instituto de Fisica de
Sao Carlos, Universidade de Sdo Paulo, Sdo Carlos, Julho de 2021.

Os Quantum Speed Limits (QSLs), ou limites quénticos de velocidade, vém se tornando uma ferramenta
poderosa para analisar a dindmica de sistemas quanticas por meio de limites fundamentais na evolucao
entre estados. Aplicagdes com respeito a limitagdes para o processamento de informacao e otimizagao
de dindmicas de sistemas quanticos fechados e abertos motivam a formalizacdo e exploracdo deste
conceito. Em especial, a abordagem geométrica na busca de QSLs se propde a construir os alicerces
destes limites a partir da estrutura do espago de estados. Neste trabalho de conclusdo de curso,
contextualizamos o problema de busca por QSLs e formalizamos a abordagem geométrica baseada
no teorema de Morozova, Chentzov e Petz para estabelecermos uma familia de QSLs vélidos para
dindmicas unitdrias e ndo-unitdrias. Aplicamos esta formula¢do a um modelo nao-unitario de dephasing
de um qubit em contato com um grau de liberdade do ambiente com o fim de buscar relacdes entre os
QSLs analisados.

Palavras-chave: Informacdo quantica. Quantum speed limits. Metrologia quantica.



1 INTRODUCAO

O inicio do século 20 foi marcado pelo proficuo desenvolvimento da mecanica quantica como fruto de
uma revolugdo cientifica em curso. Neste momento, a nossa concepg¢do de realidade fisica fora posta em
cheque para dar lugar a uma nova forma de entender a natureza. Em especial, o principio de incerteza
de Heisenberg (1927) estabeleceu um limite fundamental no nosso conhecimento acerca de quantidades
fisicas. Na antiga mecanica ondulatéria, a relacio de incerteza posicdo-momento (AxAp > h/2)
relaciona a largura do pacote de onda no espago da posi¢cdo e momento, de forma que se a fungdo de
onda de uma particula no espaco das posi¢oes for bem localizada, no espaco dos momentos ela serd
delocalizada, impossibilitando a medida simultanea destas duas quantidades. Na mecanica matricial,
dados dois observaveis A e B, os seus desvios padrdes sdo relacionados por AAAB > |([A, B])|/2.
Esta ultima relagdo € uma limitagcdo no estado de preparacdo do sistema: ndo € possivel construir um

ensemble de sistemas quanticos em um estado de forma que viole o principio de incerteza.

Outro principio de incerteza, também introduzido por Heisenberg, € entre energia e tempo
(AEAt > h). Ha de se notar que ao passo que AFE deva ser interpretado como o desvio padrido da
hamiltoniana H para uma dindmica, a quantidade At ndo possui este significado, visto que o tempo
nao € elevado ao patamar de operador na mecanica quantica, como acontece com posi¢do, momento,
entre outros'. Ndo obstante, uma interpretacdo comumente dada para o principio de incerteza A EAt
€ de que uma medida da energia durante um tempo finito At carrega uma incerteza A E. Entretanto,
devido a falta de rigorosidade nos argumentos a favor dessa interpretacdo, outros modelos e derivacoes

foram propostas para dar luz a essa caracteristica da natureza quantica.

No espirito de buscar uma interpretagdo mais clara, Mandelstam e Tamm (MT) [1] derivaram
uma expressao similar aquela proposta por Heisenberg. Desta vez, a desigualdade supracitada seria
um limite inferior no tempo de evolug¢do de um estado quéntico inicial |¢)y) para um estado quintico
final |¢),) sobre uma dada dindmica unitaria independente do tempo. Este resultado foi explorado e
estendido para dinamicas dependentes do tempo em diversos trabalhos posteriores, inclusive, pondo a

desigualdade sobre bases geométricas [2].

Cerca de 50 anos apds a descoberta de MT, Margolus e Levitin (ML) [3] reportaram outro
limite para o tempo de evolugdo sobre uma dada dindmica. O resultado de ML, por sua vez, ndo recobra
o resultado de MT e vice-versa. Assim, a existéncia de dois limites diferentes de igual validade impde
uma resposta paradoxal para a seguinte pergunta: quao rapido pode ser dada a evolucdo de um sistema
quantico sujeito a uma dindmica dada? Este é o objetivo principal na procura por QSLs, ou limites

quanticos de velocidade.

' A dificuldade de encontrar um operador tempo foi posta inicialmente pelo chamado Teorema de Pauli em que

se demonstra a impossibilidade de existéncia de tal operador para um sistema quantico cujo hamiltonianao
H tem espectro discreto limitado inferiormente.



E natural que nos perguntemos quais seriam os limites para sistemas fechados dependentes
do tempo, estados mistos e para sistemas abertos — governados por uma equagdo mestra. O enten-
dimento deste limite quantico fundamental para uma dinamica quantica pode nos fornecer insights
no incremento da velocidade de computacdo e processamento de dados, interesse especial dentro
de areas de pesquisas bem estabelecidas, como a Informagdo e Computacdo Quantica, e de areas
crescentes, como a Termodindmica Quantica [4]. A partir da década de 80 houve um florescimento
da geometria da informacao, congregando o conhecimento de geometria diferencial com a ciéncia
de informacdo. Em especial, a conexdo entre medidas de distinguibilidades de estados e distincia
no espaco de estados € feita. Para o caso quintico, o poderoso teorema de Morozova, Chentsov e
Petz (MCP), nos permite encontrar uma familia de métricas Riemannianas contrativas no espago de
estados, que nos viabiliza definir um ndmero infinito de distancias entre matrizes densidades distinta.
Em um trabalho recente, por Pires et al. [5], foi possivel construir uma familia de QSLs geométricos
univocativamente definidos pela familia de métricas compativeis com o teorema MCP. A grosso modo:
o tempo minimo de evolucdo para uma determinada métrica ocorre quando a dindmica evolui sobre
uma geodésica. E importante notar que, como h4 uma mirfade de QSLs geométricos revelados por este

trabalho, é preciso encontrar o QSL mais tight >.

A presente monografia estd dividida como se segue. O Capitulo 2 serd dedicado para a tarefa
de definir os QSLs sobre bases tedricas firmes. Serdo discutidos os resultados de MT e ML, o teorema
de MCP, a contruibui¢do recente de Pires [5] e QSLs referentes as métricas de Fisher e Wigner-Yanase,
que serdo de interesse especial para andlises subsequentes. No Capitulo 3 iremos discutir o modelo de
atenuacdo de fase paralela, conhecido como dephasing, para um sistema de dois niveis acoplado com
um banho térmico. Serd feita uma andlise do QSL tanto para o sistema de dois niveis, quanto para o
banho, este tltimo sendo a contribui¢c@o original apresentada nesta monografia. Procuramos determinar
o QSL mais fight entre as métricas mencionadas e compararemos os resultados para o qubit e para o

banho (ambiente). Por fim, o Capitulo 4 resumird nossos resultados e conclusdes.

2 Um QSL é mais tight que outro se fornece um limite inferior pro tempo de evolu¢io menor.



2 QUANTUM SPEED LIMITS E A GEOMETRIA DO ESPACO DE ESTADOS

Neste capitulo desenvolveremos o entendimento dos QSLs sobre alicerces geométricos. Iremos
explorar os resultados seminais que motivaram o estudo por QSLs geométricos (§2.1), explorar a classe
de infinitas métricas possiveis para distinguibilidade de estados quanticos no espago de estados por
meio do teorema MCP (§2.2), e finalmente, definir os QSLs geométicos e explorar a dinamica unitéria

por meio de resultados analiticos para as métricas de Fisher, Wigner-Yanase (§2.3).

2.1 Resultados seminais

O ponto de partida para a busca por Quantum Speed Limits € a tentativa de dar uma interpreta-
¢do clara ao principio de incerteza energia-tempo, pois em geral ndo € possivel definir um operador
tempo e utilizar o principio de incerteza AAAB > |([A, B])|/2.

O resultado de Mandelstam e Tamm [1], vdlido para dindmicas unitdrias independentes do
tempo, utiliza o teorema de Ehrenfest, d/dt(A) = +([H, A]). Assim, pode ser feita a conexdo da
relagdo de comutacdo [H, A] com a taxa de variag¢@o do valor esperado do operador A. Considere um
estado inicial |¢g) e um estado evoluido |1),) = U, |¢)y). Defina um projetor sobre o estado inicial A =
|1b0) (10| que possui a propriedade de idempoténcia A? = A. Podemos escrever AA := /(A) — (A)2,
com o valor esperado sendo tomado com (A) = (.| Al,) = (0| A |1hg). A partir da relagdo de

incerteza, obtemos:

h
=32

d(A)/dt
(A) —(4)?

=h ‘% arccos(| (¥olv(t)) ]) (2.1)

Utilizando a desigualdade f; |f(t)|dt > | fab f(t)dt| e integrando de 0 a t = 7, obtemos:

h
T > AT arccos(| (Yol|v) |) (2.2)

Chamamos o lado direito da equagdo acima de 7ggsy, € estabelece um limite inferior para o tempo
de evolugdo do estado |t)g) ao estado |1, ). A equac@o 2.2 nos informa que é possivel que haja uma
dindmica “mais eficiente” que liga estes dois estados, e esta dindmica € aquela que satura a desigualdade.
A dependéncia em A H nos revela uma caracteristica importante dos QSLs em geral: o limite inferior
em 7 depende fortemente dos recursos fisicos do sistema que estamos lidando. Neste caso, dentro da
familia de hamiltonianas com desvio padrao A H fixo, o QSL de MT nos d4 um limite na rapidez da
evolucdo entre dois estados. Assim, os QSLs nos permite explorar a otimizac¢io de processos fisicos
que possuem vinculos em algumas quantidades fisicas. Convém dois exemplos: (i) Estado inicial [¢)
autoestado de energia, AH = 0 e portanto 7gg7, > 00, que reflete o fato que nio existe hamiltoniana
que evoluird |1)) para o estado alvo |1, ); (ii) Desvio padrdio AH — oo gera um 7gs;, — 0 e portanto,

poderiamos escolher uma dindmica em que a evolucdo ocorra arbitrariamente rapida.

Em contrapartida, o resultado de Margolus e Levitin [3], 53 anos depois do QSL de MT, erradica

a dependencia do QSL no desvio padrdo da hamiltoniana e deriva um novo limite, agora em fungdo do
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valor esperado de /1. Mais uma vez, considere uma dinamica unitdria gerada por uma hamiltoniana

H independente do tempo, agora com autovalores positivos. Tome um estado |¢g) = > ¢, |E,)
. = . En

decomposto nos autoestado da energia e tome sua evolugdo temporal [1h,) = Y ¢, exp(—2£2T) |E,).

Consideraremos o caso em que (1y|t¢,) = 0, ou seja, estado inicial e alvo ortogonais, assim tanto a

T) -0

parte real quanto imagindria desta quantidade sdo nulas.

e({thol¥-)) Z IcnIQCOS(

B 2.3)
-
n((yoltr) = 3 ensin (57 ) =0
Usando a desigualdade cosx > 1 — %(:c +sinz) Vz > 0 na primeira das 2.3, encontramos:
7h
> 2.4
"= o) 24)

E importante notar que este resultado vale apenas para evolugio entre estados ortogonais. Desta vez o
limite no tempo de evolugdo é sobre hamiltonianas com o mesmo valor médio () para suas dindmicas.
Além disso, o resultado de ML é completamente independente do QSL de MT, ou seja, € impossivel
obter um a partir do outro. O fato de existirem dois limites independentes para o tempo de evolugdo
entre dois estados ndo constitui um paradoxo, uma vez que os limites sao sobre familias de dinadmicas
diferentes — AH fixo ou (H) fixo. De fato, Giovannetti, Lloyd e Maccone, em 2003, [6] mostraram
numericamente que, dado estes vinculos energéticos, o tempo de evolu¢do minimo entre estados mistos,

nao-ortogonais, sob dindmica unitaria é dado por:

TQSL = max{ (€ )QAF}I’B( ) ?Z>} (2.5)

Com € := F'(py, p,) a fidelidade de Uhlmann-Jozsa entre os estados inicial e final, 3(¢) = 2 arccos(y/€) /7

e a(€) uma fungdo que deve ser minimizada.

Além disso, um resultado similar para estados puros e ortogonais foi alcancado por Levitin
e Toffoli [7]. O trabalho destes autores corrobora o descobrimento de Giovannetti ef al. dando bases
mais firmes a unificacdo do QSL de MT e ML.:

wh  wh
TsL = max { 2AH’ 2(H) } 20

O primeiro passo no sentido de uma geometrizagao dos QSLs foi dado por Anandan e Aharonov
[2] tratando sistemas fisicos puros com a hamiltoniana dependente do tempo evoluindo de acordo com

a equacdo de Schrodinger. Antes disso, iremos revisar alguns conceitos matematicos irdo ser utilizados

ao longo desta monografia.

Uma distdncia entre os pontos de um conjunto {ay, as, . .., a, } deve satisfazer (i) Positividade
l(a;,a;) > 0; (ii) Simetria {(a;, a;) = {(a;, a;); (iii) Desigualdade triangular ¢(a;, ai) < €(a;, a;) +
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{(a;, ay). Estamos interessados em distdncias Riemannianas, que podem ser obtidas a partir da
integracdo sobre uma curva da métrica Riemanniana. A métrica, por sua vez, ¢ uma forma diferencial
ds? que indica como a distancia entre pontos vizinhos devem ser medidos. Portanto, a distincia entre
dois pontos z e y induzidas pela métrica ds? ao longo do caminho 7 (com x e y seus extremos) é
dado pela integral {(x,y) = f7 ds. A curva que minimiza o valor de ¢ é chamada de geodésica e
indicaremos-a por L. Ao longo deste trabalho usaremos os termos “métrica” e “métrica Riemanniana”

intercambiavelmente.

Gostariamos de descrever uma distincia entre o estado inicial |¢)y) e o estado alvo |1, ) Seja a
diferencial de um vetor de estado dado por |di) = (0 |1) /06)d6 onde 6 é um pardmetro do estado [1)).
Uma métrica natural para o espaco de Hilbert é construida a partir da norma desta diferencial, ou seja,
ds® = (di|dv)). Entretanto, essa métrica é ndo nula para estados colineares ([¢g) € € [1)g), v € R),
que sdo fisicamente equivalentes (representam o mesmo estado). Precisamos de uma métrica que nao
distingua vetores colineares. Anandan e Aharonov fazem isso por meio da métrica de Fubini-Study no

espago projetivo:
(dpldy) | (¢ldy)|”
{¥[¥) (¢[¥)

Resumidamente, estados colineares definem retas complexas passando pela origem do espaco de

ds® =

2.7)

Hilbert e o conjunto destas retas gera o espago projetivo. A rela¢do |dv;) = |Yyrar) — |14) € a equagdo
de Schrodinger (ifid, [1;) = Hy |1;)) nos dé:
a5t — 2 a2 2
S = ﬁ t ( '8)

com AH; = \/(wt| H2 b)) — (4| Hy |1h)* o desvio padrio da hamiltoniana.

Assim, o comprimento de qualquer trajetdria entre os estados |¢g) e [i,) serd dado pela
integragio do elemento de linha ds, isto &, ((|) , 1)) = [ ds = I~ [ AH,dt. O QSL surge

notando que qualquer comprimento de curva serd maior ou igual a geodésica:

L([¢o) , [12)) < U|wo)  |vr)) 2.9

Definindo a média temporal do desvio padrdo como a quantidade AH, = % fOT dtAHy;, a equagao

acima pode ser escrita como:
h

~ AH;

E possivel encontrar uma férmula analitica para a distancia geodésica na métrica de Fubini-Study,

L(|o) , 19-)) (2.10)

dada por L(|1)y) , |1)r)) = arccos| (1 |tbg) |, assim, o resultado de Anandan e Aharonov é:

h
T > <~ arccos | (1, |vo) | (2.11)

t
Mais uma vez, o limite inferior no tempo de evolucdo é dependente dos recursos energéticos

disponiveis, expressado, desta vez, por A H. Ademais, este resultado recobra o de MT para hamil-

tonianas independentes do tempo. O resultado acima revela uma caracteristica singular dos QSLs
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geométricos: o menor tempo de evolucdo se dard com a saturagdo da 2.9, ou seja, se o sistema evoluir
sobre uma geodésica. E sobre estas dguas que o resultado de Pires [5] se banha, que serd explorado no

restante deste capitulo.

2.2 Medidas de distinguibilidade e teorema MCP

O resultado de Anandan e Aharonov fundamenta-se sobre uma importante tarefa na Informacao
Quantica: a andlise da distinguibilidade entre estados quanticos. Em especial, a chamada geometria
de informacao pretende abordar este problema sobre o viés da geometria diferencial. Posto que tanto
o conjunto de distribuicdo de probabilidades sobre o espaco de fases cldssico quanto o conjunto de
operadores densidade no espaco de Hilbert geram variedades Riemannianas, o problema de distin¢ao

de estados pode ser quantizado em medida de distancias a partir de métricas definidas nestes espagos.

Exige-se que limitemos as métricas de interesse as métricas contrativas, uma vez que a aplicacio
de um mapa f sobre dois elementos de uma superficie Riemmaniana cldssica ou quantica x e ¥, introduz
ruido que torna estes estados mais similares devido a perda de informacao. Desta forma, a distancia
d induzida por uma métrica € tal que d(f(z), f(y)) < d(z,y). Para o caso classico, a dindmica de
uma distribui¢do discreta p' = {p1, pa, . . ., pa} N0 espaco de probabilidades P é dada pela aplica¢do
de um mapa estocdstico. O teorema de Chentsov assegura que a chamada métrica de Fisher-Rao é
a unica escolha de métrica contrativa possivel entre duas distribui¢cdes de probabilidades. Isto €, a
distinguibilidade entre os estados p'e p'+ dp, onde dp = {dpy,dps,...,dps}, é dada pela métrica

abaixo.

d
Z (dp;)? 2.12)
=1 P

No caso quantico a dindmica € dada por mapas CPTP (Completely Positive and Trace Preserving)
aplicados em operadores densidade no espaco de Hilbert. Agora a escolha de métrica contrativa ndo é
Unica pois, com efeito, hd infinitas métricas sobre os operadores densidade. Desta vez, este resultado é
assegurado pelo teorema de Morozova, Chentzov e Petz (MCP), que € enunciado logo abaixo, sem

prova.

Teorema de Morozova, Chentzov e Petz (MCP). Seja H o espaco de Hilbert de dimensao finita d
e seja S C H o conjunto de operadores densidade p que satisfazem as seguintes propriedade: (i)
Hermiticidade p = p'; (ii) Unitaridade do trago Tr(p) = 1; (iii) p é semipositivo definido p > 0.
Considere um operador densidade p e dp, tais que dp = dp' e Tr(dp) = dTr(p) = 0. Além disso,
leve em conta a decomposicdo espectral p = ijl |7) (j| do operador densidade, entdo a métrica

Riemmaniana contrativa no espaco de estados, ou seja, a distancia entre os operadores vizinhos p e
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p + dp, é dada pela formula:

o _ L[S~ 1Gldoli) P R
ds =7 |2 +23 ¢ (w5m)] Gl doll)| 2.13)
J=1 Pi =1
i<l
Onde
1

cr(w,y) = e (2.14)

e f(u) pertence a classe de fun¢des de Morozova-Chentzov (MC), ou seja, fungdes f(u) : Ry — R,

com as propriedades abaixo:

(i) Para operadores densidade p e o tais que p < o, entdo f(p) < f(o)
(it) f(u) =uf(1/u)
(iii) f(1) =1

A equacdo 2.13 tem como caracteristica principal a separacao entre as populacdes e coeréncias
dos estados envolvidos. O primeiro termos depende das populacdes de p e dp e € facilmente reco-
nhecivel como a métrica de Fisher classica na Eq. 2.12. O segundo termo conta com a contribui¢ao
das coeréncias de dp na base dos autoestados de p e é responsével pela ndo unicidade da métrica. E

importante frisar que este termo € puramente quantico.

Note que este teorema lida com operadores densidades, portanto, para fazer a conexao com a
métrica de Fubini-Study para funcdes de estado, discutida na se¢do passada, recorremos ao trabalho de
1996 de Petz e Sudar. Um dos resultados principais deste trabalho € o colapso de todas as métricas
contrativas em um multiplo da métrica de Fubini-Study no caso de estados puros. De todo modo,
focaremos em estados mistos, ja que s@o as coeréncias que permitem a infinidade de métricas no

espaco de estados.

Outra propriedade importante é que a Eq. 2.13 € uma correspondéncia univoca com as fungdes
de MC. Existe uma desigualdade sobre essa classe de fungdes, em que, para f(u) uma fungdo de MC
arbitrdria vale f,,;,(u) < f(u) < fiae(u),onde a fun¢do minima é dada por:

2u

(2.15)

E a funcdo maxima é:
14w
far(u) = fua(u) = —5

Neste trabalho estaremos interessados em apenas duas destas fungdes. A primeira € a f,,,, cuja métrica

(2.16)

correspondente ¢ a métrica de Fisher Quantica (QF). A segunda esta relacionada com a métrica de

Wigner-Yanase (WY) e € dada por.

fwy (u) = i(\/@r 1)? (2.17)
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A escolha destas duas funcdes se deve ao fato de serem as tdnicas com expressdes analiticas para a
geodésica entre dois operadores densidades. Encontrar a geodésica €, em geral, uma tarefa complexa.
Entretanto vale notar que, em decorréncia do Teorema de MCP, quaisquer outras escolhas de fun¢des
de MC seriam validas para as andlises subsequentes desde que suas geodésicas sejam calculdveis. Além
disso, as duas métricas escolhidas sdo as mais extensivamente exploradas na literatura de informacao

quantica, e portanto, possui aplicacdes ja conhecidas.

A geodésica associada a métrica de Fisher Quantica é conhecida como angulo de Bures e €

dada por:
L% (p1, pa2) = arccos( F(p1, p2)) (2.18)
Onde I’ € a fidelidade Uhlman-Jozsa:

F(p1, p2) = (T{ \/EPQ\/E])z (2.19)

Por outro lado, a geodésica associada a métrica de Wigner-Yanase é dada por:

LYY (p1, pa) = arccos(A(py, p2)) (2.20)

Em que A é chamada afinidade quantica:

Alpr, p2) = Tr(\/p1v/p2) (2.21)
2.3 QSLs geométricos

O resultado principal do trabalho de Pires [5] € apresentado a seguir. Considere um estado p)
parametrizado pelo conjunto A = {\,},—1.., que variam analiticamente. Suponha uma dinidmica que
varia o conjunto de parametros A de um estado inicial py := p,, a um estado final p,,. A variacdo
dos parametros ird descrever uma curva 7y no espago de estados cujo comprimento serd denotado
por £, (px,, par)- De acordo com o teorema de MCP, hd uma infinidade de métricas Riemmanianas
contrativas — dependentes da escolha da fun¢do de f de MC — cuja integragao entre os estados inicial
e final sobre o conjunto de parametros A nos dard o comprimento citado, ou seja, EV Pars Pap) f ds,
onde ds? = gm(dp)\, dp,) dada pela Eq. 2.13.

Vamos considerar py + dp,, o estado gerado ap6s uma variacgao infinitesimal dos pardmetros A

a partir do estado p,. O operador dp), € hermitiano, de traco nulo, e dado por:

dpy =Y upadA, (2.22)
pn=1
onde 0,p) = g%. E justamente a norma deste operador, ||dp,||, que define a distancia ds entre os

estados py € py + dpy, isto &, ds* = ||dp,||?. Focaremos agora em calcular os termos | (j| dpy |j) | €
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| (7] dpx |I) |, que aparecem na Eq. 2.13. Suponha a decomposi¢io espectral de py como:
px =Y _pili) (] (2.23)
J

Portanto:
Oupr = >_(0upy) 17) Gl + 23 14)) Gl + 03 17) (9 (4]) (2.24)

j
ja que os autovalores e autovetores de p, dependem do conjunto de parametros \. Utilizando a

identidade (0,,u (j|l)) = — (j| 9, |1), decorrente de (j|l) = ¢;;, segue que:

(10w 1) = 038,p5 + (P = p3) (3] D |1) (2.25)

Finalmente, a partir das Egs. 2.22 e 2.25

r

Gldoall) = 3 (71 8up 1) A,

p=1

., (2.26)
= Z [53‘18#2?3' +i(p; — pl)A;ﬂ dA,
pn=1
Onde A%} := i (j| 0, |I). Fazendo j = [ temos:
[Gldpali) P = 3 0upiupsddudh, (2.27)
p,v=1
Para j # [ ficamos com:
[(Gldpa D) [P = (0 — 20> A A dAdA, (2.28)
=1
As duas equagdes acima na 2.13 nos dao:
ds’ = Y gl,dN\.d), (2.29)
p,v=1

onde gf;, = Fu+ Qﬁy. O termo F,, € comum a todas as métricas Riemmanianas contrativas no

espaco de estados e se refere a contribui¢do das populacdes de pj:

d
1 . .
]-"lw = — Z m (2‘30)

4= 1

O termo Q,{u € a contribuicdo das coeréncias de dp, e, por depender da escolha da funcdo f de MC,
corresponde a propriedade de ndo-unicidade das métricas no espaco de estados:
1A
Qh =5 > crvs. )0y — ) AR A (231)

=1
j<i
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Consideremos que o conjunto de pardmetros A € dependente do tempo. Para uma evolu¢do dada para
tempo ¢ € [0, 7], A = A(t) o comprimento da curva  descrito no espaco de estados devido a evolugdo
do operador densidade do seu estado inicial py = px, = px(o) at€ o estado final p; = py, = px(r)

serd dado por:

T ds i . dA, dA
oo, pr)= [ds= [ dt— = [ dt f— 2.32
pn,v=1
O comprimento do caminho ~ que liga os estados inicial e final deve ser, por defini¢do, maior ou igual

que a distancia geodésica L7 (py, p-) que liga estes estados. Este € o resultado principal que define os

QSLs geométricos:
L (po, pr) < H(po. pr) (2.33)

O limite inferior para o tempo de evolucio 7 deverd ser obtido com a solucdo da desigualdade acima a
partir de expressoes analiticas para éi(pg, p-) e LY (po, p+). Sendo assim, a saturagio da desigualdade
se dd apenas se a evolucdo ocorre sobre a geodésica, tal qual o QSL obtido por Anandan e Aharonov

obtido na se¢do 2.1.

Convém lembrarmos que, assim como o comprimento Kﬁ(po, p-) depende da escolha da
fungdo f de MC, a distancia geodésica £/ (py, p,) também, nos fornecendo uma infinidade de QSLs.
Para buscarmos o QSL mais tight, introduzimos a distancia relativa 6/, que quantifica o quanto o

comprimento ¢/ (po, p, ) difere de L7 (p, p;):

55 . oo pr) = £ (po. pr)
7 Ef(p(]?p‘r)

Assim, para uma dada dindmica, a métrica mais tight é aquela que minimiza a quantidade 67, pois o

(2.34)

comprimento da curva -y gerada pela dindmica é o mais préxima possivel da distancia geodésica relativa
a esta métrica. Como explicitado na secdo 2.2, ndo h4 expressdes analiticas para £/ (py, p,) para todas
as métricas derivadas da classe de fun¢des de MC, exceto para as métricas de Fisher Quantica e de
Wigner-Yanase. Nas anélises subsequentes, exploraremos qual destas métricas € a mais tight para uma
dada dinimica, ou seja, se 69 < §"Y, ouse sVY < §@F.

Até agora interpretamos os QSLs geométricos seguindo a linha de raciocinio a seguir: (i) Tome
uma dindmica arbitréria (unitdria ou ndo-unitdria) e deixe um operador densidade evoluir de um estado
inicial py a um estado alvo p, durante uma quantidade de tempo 7 (ii) Pela 2.33, o comprimento
6,1;( po, p-) da trajetéria descrita no espago de estados é sempre maior ou igual a distincia geodésica
L (po, pr), deve existir uma outra dindmica que leva py a p, durante uma quantidade de tempo
Tosr, < 7 (iii) O caminho que esta nova dindmica traga € uma geodésica (iv) Para encontrar o menor

Tosr possivel entre estes dois estados, € necessdrio minimizar a quantidade 640 dada pela 2.34.

O raciocinio acima ainda nao evidencia a potencialidade dos QSL na otimizacdo de dindmicas

com vinculos sobre recursos fisicos. Faremos isso para dinamicas unitarias. Seja p, um estado inicial
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e uma hamiltoniana H; dependente do tempo, que gera a dinamica. O estado evoluido serd dado
por p; = UtpOUtT, onde o operador unitario U; € encontrado a partir da equacdo de Schrodinger

iho,U; = H,U,;. Como a dindmica é parametrizada apenas pelo tempo, ou seja A = {t}, ficamos com:

d 2 d
1 dp; 1 F_ 1 2 4t gt
Fi = 1 ; <E) o~ Q= §ﬂz_10f(pj7pz)(pj — )" AG A (2.35)
j<l

Os autovalores p; do estado inicial sob evolu¢@o unitdria sdo constantes, portanto F;, = 0.
Além disso, podemos ver que, para j # I, A5 = (1/h) (j| 0H,|l), com 0 H; := H; — (H;)I . Portanto,
o elemento de linha a ser integrado é:

1 . .
o = gga 2 csvs ) 0s =0 GIOH D (11 9H 1) (2.36)
]7 =
J<l

Facamos agora a escolha da funcao de MC dada pela Eq. 2.16, que corresponde a métrica de Fisher
Quantica. A Eq. 2.14 fica ¢s(z,y) = 2/(x + y) e daf a Eq. 2.36 se resume em:

1 —)? .
g0 = LS TP s 16, 1)

=— 4
2R vt P+ mi
I (2.37)
< 5 2+ R)vGISH, 1) (U 6H, 1)
I < =)
J g<i
A andlise da soma acima nos g°* < % (AH,)? onde AH, = \/(H?) — (H,)? é o desvio padrio da

hamiltoniana calculada para o estado p;. Tirando a raiz quadrada e integrando a expressao acima,

ficamos com:

1 T
() < 1 / dAT, (2.38)
0
O nosso QSL poder4d ser obtido utilizando a Eq. 2.33:
1 T
£9%(po.pr) < 5 / dtAH, (2.39)
0

Onde L% (py, p;) é dado pela 2.18. Mais evidentemente, definindo a média temporal do desvio
padrdo como AH, := % fOT dt A H,, finalmente observamos os QSLs como uma poderosa ferramenta
na otimizagdo de dindmicas com limitagcdes sobre seus recursos fisicos:
h
g - 2.40
T Z AHt (p07 P ) ( )
Por outro lado, a escolha da métrica de Wigner-Yanase, dada pela funcdao de MC da Eq. 2.17, ao

realizarmos célculos similares' irdo nos dar:

h
> ———L"Y(po, p- (2.41)
T \/§\/f (oﬂ)

I Consulte [5] e [8] para mais detalhes.



2.3 OSLs geométricos 14

Onde £"Y ¢ dado pela Eq. 2.20, com V7 = L [T dt\/Z(py, Hy), e onde Z(p;, H;) é chamada de
Informacdo de Wigner-Yanase. Aqui podemos ver que os recursos fisicos podem ser informacionais e

nao apenas energéticos, como € o caso da Eq. 2.40.
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3 ESTUDO DE CASO: DEPHASING PARA UM SISTEMA DE 2 NIVEIS

Seguiremos, neste capitulo, com uma aplicacdo do maquindrio teérico adquirido na secao
anterior realizando uma andlise do QSL para uma dinadmica ndo-unitdria, no contexto de sistemas
quanticos abertos. Faremos primeiramente uma descri¢do do modelo de dephasing pra um qubit (§3.1)
e em seguida discutiremos os QSLs para o qubit e para o ambiente (§3.2). Convém deixar claro que o
objetivo das andlises subsequentes € a busca de possiveis correlacdes qualitativas entre os QSLs mais

tight para dois sistemas interagentes (qubit e ambiente).

3.1 Descricao do modelo

Focaremos no modelo de atenuacdo de fase paralela, ou dephasing, para um qubit (sistema
de 2 niveis) em um campo de bésons (ambiente). Justifica-se a escolha deste modelo por ele possuir
uma solugdo analitica e apresenta decoeréncia sem que ocorra dissipacao de energia, podendo assim,

explorar os efeitos da decoeréncia pura. A dindmica do qubit + ambiente é dada por [9]:

2

[\ J/

HO Hint

1
H = Sown+ > bl + Y 0. (o] + gii) 3.1)
k k

Aqui, b e b,t s@0 os operadores aniquilacdo e criacdo para o k-€simo modo do campo, respectivamente.
Seja |n), o estado que indica que o modo k possui nimero de ocupagdo n, portanto by |n), =
vnln—1), e b In), = vn+1|n+ 1),. As relagdes de comutagdo sdo [bk, bL,] = O © [b;, bH =
[bg, brr] = 0. O termo Hj nos dé a evolugdo livre do qubit e do ambiente e o termo H;,,; descreve
a interacdo entre estes sistemas, com g;, as constantes de acoplamento. Note que, pelo fato de H;,,;
comutar com Hy, o termo de intera¢do ndo gera transi¢des de niveis de energia no qubit, o que evidencia
que, sob esta interacdo, nao ha troca de energia entre o qubit e o ambiente. A evolucao temporal do
sistema qubit + ambiente é dada por um operador unitdrio. Convém enunciar-lhe na versdo de interacao,

onde ele toma a forma:
~ 1
U (t) = exp <§0Z Z ay (t) bz — a, (t) bk> (3.2)
k

com ay, (t) == 2g5(1 — e™*') /wy.. Tome |+)) um estado qualquer do ambiente. A atuagdo do operador

da Eq. 3.2 é descrita por:

0 (5)[0) & o) = 0} @ [[ D (—1% <t>) ) (33)

2
k

GO e =0 e[ (+500) W) 34)
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onde o operador deslocamento D(«) = exp(b'a — ba*), unitdrio, que obedece a relagdo DT (o) =

D7 (a) = D (—a) gera estados coerentes ao ser aplicado em um estado de vécuo .

Com estes elementos postos, podemos calculas a evolucdo tanto para o qubit, quanto para
o ambiente. Seja o(0) um estado inicial do sistema conjunto (qubit + ambiente), o estado evoluido
serd dado por o(0) := U (t) 0 (0) UT () onde U (t) = e~*'{J (t) é o operador unitario de evolugio
temporal na versdo de Schrédinger. Assumiremos que nosso estado inicial serd um produto tensorial
entre o qubit e os estados do campo, ¢ (0) = p(0) ® [ ], Rer, ou seja, o qubit e o ambiente estdo

descorrelacionados. Aqui, Ry € a matriz densidade candnica para o0 modo k£ do campo, Ryp =
(1 — e_ﬁ‘“k) S, e PR n) (n).

A evolucao do qubit € dada tomando o traco parcial nos graus de liberdade do ambiente, isto

é, p(t) = Trg o(t). A andlise dos elementos de matriz de p(t), nos da a importancia deste modelo.

Segue que as populagdes do qubit — diagonais — se mantém constantes ao longo da evolugdo, ou seja,
poo(t) = poo(0) == (0] p(0) |0) € p11(t) = p11(0) := (1] p(0) [1). Por outro lado, as coeréncias — nao
diagonais — apresentam um fator de atenuag@o, p1o(t) = pii; (t) = p10(0) == (1] p(0) |0) e~ T®), com:
I () = Z 4\9’;|2(1 — cos(wyt)) coth (%) (3.5

r Yk

Desta forma, para um fator de atenuacdo monotonicamente crescente, os termos nao diagonais sao
suprimidos exponencialmente de forma que, para tempo infinito, o estado evoluido estd em um estado
incoerente na base dos autoestados de o, p(t — 00) = poo |0) (0] + p11|1) (1], perdendo qualquer

informagao acerca das coeréncias.

A diagonalizac¢do do qubit é feita utilizando a representagdo de Bloch, p = (I+7-7)/2. O vetor

de Bloch para o estado evoluido p(t) é dado por 74o{q: sin 6y cos(¢o + wot), g: sin Oy sin(do + wot),

cosf} com q; = exp (—%t). A diagonalizagdo deste estado nos déd p(t) = >_,_, p; |&) (£] onde:
1 ! i(oteot)
Py = §(1 + 70&); |£) = N [(cos by £ £(t)) |0) + e gesin 6o [1)] (3.6)

com &(t) = \/cos? 6y + ¢7 sin® 0 e o fator de normalizagio N := +/(cos O + &)2 + ¢? sin

De maneira similar, a evolu¢do do ambiente € obtida tomando o traco parcial sobre o qubit, i.e.,
pr(t) = Trg o(t):

; 1 1 .
pR(t) = poo (O) ];[ e—zbzbkwktD (_ﬁak) RkTD (§ak> 6zb£bkwkt

‘ 1 1 .
+ p11 (0) H e*lbzbkwktl) <§Oék) RirD (_50%) ezbzbkwkt
k

Uma discussdo mais aprofundada acerca do operador deslocamento — como suas propriedades e identidades
— pode ser encontrado em [10]

3.7

1
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Este resultado ja nos mostra que explorar a dindmica de sistemas com infinitos graus de liberdade
pode se tornar uma tarefa rapidamente complexa. Restringiremos nosso modelo, exato até entdo, por
meio de uma aproximagao de acoplamento fraco, onde manteremos apenas termos lineares em gj.
Observamos que a Eq. 3.7 depende do acoplamento apenas via operador deslocamento, de forma que

devemos considerar a aproximacéo linear D(cy/2) = (bloy — brar})/2, nos dando:

pr(t) = pr(0) + (p11(0) — poo(0)) [ [(1 — ™)
) (3.8)

sinh (%) (Oék (t)e—iwkte—ﬂwk/ZbL + az(t>eiwkteﬂwk/2bk) exp <_Bwkb2bk>

A aproximagdo gera esta forma mais simples, onde fica evidente o estado evoluido como o estado inicial
+ uma perturbacdo. A diagonalizacdo segue da teoria de perturbacdo de primeira ordem, que seleciona
todos os termos lineares no acoplamento. Sendo |n) = [], |n),., a corre¢do para os autovalores ¢ dada
por (n| Perturbagdo |n) = 0 pois j, (n| by [n), = 1 (n| bl |n), = 0, portanto os autovalores sio dados

por P, =[], P¥ onde PF é o autovalor de Ryr:
PP = (1 — ePr)e=Punn (3.9)

J4 os autoestados serdo dados por [¢,) = [, |¢F) com:

efzwkt -1

[¥r) = [n)y + (p12(0) — poo(0)) (gk\/n +1|n+1), — giv/n|n — 1>k> (3.10)

Wi

Juntos, estes resultados satisfazem pg(t) |¢,) = P, |¢,) até até a primeira ordem no acoplamento.

3.2 Investigacao dos Quantum Speed Limit

Esta secdo contém os resultados originais desta tese. Nos voltamos a andlise dos QSL tanto
para o qubit quanto para o ambiente. Desejamos obter uma relacdo qualitativa entre os QSLs mais
tight tanto para o qubit, quanto para o ambiente. Recordamos que, de acordo com o teorema de MCP
enunciado na §2.2, hd uma infinidade de métricas Riemmanianas no espago gerado pelos operadores
densidade. Discutimos que apenas duas métricas nos interessa (Fisher Quantica e Wigner-Yanase) pois
sd0 as Unicas que possuem uma expressao analitica para suas distancias geodésicas. Nossa andlise
buscard a métrica mais tight entre estas duas métricas, ou seja se 6%F < §"Y ouse 6"VY < §9F com

as distancias relativas 5!; dadas pela Eq. 2.34.

Algumas consideracdes precisam ser feitas. A nossa andlise se restringird a apenas um modo
do ambiente (k = 1). Por certo, este modelo microscopico de dephasing vale neste caso, entretanto,
da mesma forma que se observa a perda coeréncia, hd o refluxo de informacao de volta ao sistema,
reestabelecendo a coeréncia (vide a periodicidade da 3.5 para k = 1). De certa forma, nosso modelo

se afasta ligeiramente da andlise feita por Pires [5], que utiliza mapas dindmicos para caracterizar o
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canal de dephasing *. Portanto, nos limitamos ao regime de tempo em que ha decoeréncia para que os

resultados descritos a seguir sejam complementares a [5].

Para o qubit, utilizando a decomposicao espectral explicitada na secdo passada, as Egs. 2.35

feam: e it () @10
t 44 (1 —r3&d) |
2 o 29 _ d i
Q{: 75 sin ;z,;(p+,p ) [wO&qt + cos Q(dt) ] (3.12)
t

As fungdes cf(py,p—) dependem da escolha das fungdes de MC. Para a métrica de Fisher e de
Wigner-Yanase, respectivamente dadas pelas funcdes das Egs. 2.16 e 2.17, temos que:
8

cqr(py,p-) = 2; cwy (P, p-) = (\/1 T )2 (3.13)
—&tTo tT0

Entre o estado inicial e evoluido hd uma curva v ligando-os, e, dado uma escolha de funcdo de MC, a

distancia é I = [ \/F; + Q] dt.

As distancias geodésicas, por sua vez, possuem expressoes analiticas para quaisquer par de

qubits e sdo dadas por’:

L2 (p(0), p(1)) = arccos \/% [1 + 7 - T /(1 + [70]2) (1 + |FT|2)} (3.14)
LYY (p(0), p(1)) = arccos (i [ e +eger ’TO Hrf \]) (3.15)
T0

onde € = /1 + |73 £ /1 — |F}].

Seguiremos com a busca ao QSL mais tight para a evolugdo do qubit. Veja que se a métrica
de QF fornece o QSL mais tight que a métrica de WY, entdo devemos ter 6%7 < 6" Dai, segue a
desigualdade A = LOF¢WY — LWYQF > (), Na Fig. 1 vemos que o valor do acoplamento é crucial
para a determinagdo do QSL mais tight. Ao passo que a for¢a do acoplamento aumenta, saimos de
um regime em que a métrica mais tight em todo espaco de estado € a métrica de Fisher (Fig. 1(c)),
para o regime em que tal métrica é a de Wigner-Yanase (Fig. 1(a)). E importante notar que o trabalho
de Pires [5] evidencia que para o caso unitdrio, a métrica de QF € sempre mais tight que a de WY.
Assim, o acoplamento, mesmo com apenas um unico grau de liberdade do ambiente, € suficiente para

o surgimento de QSLs mais tights.

2 De fato, a caracteriza¢io por mapas dinimicos representa o comportamento do nosso modelo microscépico

para um nimero grande de modos de campo, cujas frequéncia de oscilacdo wy variam linearmente, o
chamado banho Ohmico
Uma derivacio destas equacdes € encontrado no Apéndices C.5 e C.6 em [8]
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Figura 1 — Gréfico da quantidade A = LF/WY — LWY(QF em fungdo 1y e 0. Os pardmetros fixados
s80 f = wy = 1 =t = 1 com acoplamento (a) g = 1.5; (b) g = 0.5; (¢) g = 0.0001.
Fonte: Elaborado pelo autor.

Podemos fazer uma andlise similar para o ambiente, buscando o QSL mais tight em sua
evolugdo. Como os autovalores sdo independentes do tempo (Eq. 3.9), entdo F; = 0 e o cdlculo de Q{

para a métrica de QF e de WY, respectivamente, sio:

167 cos* (0p) cosh? (2) sech(BQ) sin? (£) |g|*
QQF _ 12 cos?(6p) tanh (BQ) g r* cos*(6p) cos ( 2(22SGC (BQ) sin (2 ) lg] (3.16)
1674 40 i 02 (0t 4
WY = 272 cos?(6) tanh (BQ) g — ry cos'{ 03;111 )l (3.17)

com () a frequéncia do grau de liberdade para o ambiente.

Para que a distancia E{ = fOT \/ Fi + Q{ dt esteja consistente com nossa aproximacao linear no
acoplamento para o ambiente, devemos ficar apenas com os primeiros termos nas Eqgs. 3.16 e 3.17. As
distancias geodésicas, por sua vez, sao calculadas numericamente. Na Figura 2 tracamos as distancias
@c e £/ para as métrica de QF e WY, com o estado inicial do qubit (rq = 1/4; § = 7/4) no intervalo
de tempo que ocorre decoeréncia do qubit.

Podemos, agora, fazer a andlise de tightness das métricas para o ambiente. Mais uma vez, esta
andlise se baseia em observar a positividade ou negatividade de A. Fazemos isso vendo a evolugdo
temporal de A para o estado inicial do qubit 7o = 1/4; 6y = 7 /4 e pardmetros fixados § = wy = 2 = 1.
Para o qubit (Fig. 3 (a)), observamos que A € suave e sempre maior que zero. Situagao oposta ocorre
para o grau de liberdade do ambiente (Fig. 3 (b)), onde ndo hd uma evolucao suave da quantidade
A que, por vezes, assume valores negativos. A quebra da suavidade pode estar associada a: (a)
quebra da aproximacao linear no acoplamento, uma vez que as distancias geodésicas sdo calculadas
numericamente, € (b) a baixa ordem de magnitude (107'%), préxima a precisdo de maquina (107'6).
Portanto, ndo € possivel estabelecer a métrica mais tight para a evolucdo do grau de liberdade do
ambiente sob as aproximacoes feitas e/ou tragar quaisquer especulagdes tedricas acerca de analogias e

correlagdes entre os QSLs e sistemas abertos evoluidos ndo-unitariamente.
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Figura 2 — Evolugdo temporal para (a) comprimento é{ da curva ~y dada pela dindmica, e (b) distncia
geodésica entre o estado inicial e o estado evoluido por tempo ¢, ambas sob as métricas
de Fisher e Wigner-Yanase, com parametros 5 = {2 = ¢t = 1 e estado inicial do qubit em
ro = 1/4; 6y = w/4. Fonte: Elaborado pelo autor.
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(a)

1.5

0.5

0.0
I

Figura3 — A = LOF/WY _ WY QF em funcdo do tempo para (a) o qubit (b) o grau de liberdade do
ambiente. Utiliza-se os parAmetros fixos 5 = wy = 2 =t = 1 e o estado inicial do qubit
em ro = 1/4; 0y = w/4. Fonte: Elaborado pelo autor.
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4 CONCLUSAO

Neste trabalho exploramos o conceito de QSLs a partir de uma abordagem geométrica e
analisamos um exemplo de dindmica nao-unitdria a fim de buscar uma interpretacdo mais profunda

dos QSLs nestas dinamicas.

Construimos nossos QSLs geométrico a partir da robusta formulacdo promovida por Pires
[5], que explora a geometrizacdo do espagco de estados na busca de uma infinidade de métricas
Riemmanianas contrativas no espaco de estados. Os QSLs geométricos s@o origindrios do fato da
distancia geodésica constituir o menor comprimento possivel dentre todas as curvas que ligam dois
estados (Eq. 2.33). Para cada métrica existe um QSL geométrico associado. Esta formulagc@o permite a
generalizagdo dos QSLs para quaisquer dindmica — unitdrias ou ndao. Por exemplo, para o caso unitério,
encontra-se a conexao entre o tempo minimo de evolugdo e recursos informacionais e energéticos no

caso unitario.

O nosso caso de estudo é o modelo de dephasing, descrito na se¢do 3.1. Buscou-se encontrar a
métrica mais tight entre a de Fisher e de Wigner-Yanase, tanto para o qubit, quanto para o ambiente.
Assumiu-se um acoplamento fraco entre o qubit e um grau de liberdade do ambiente e, apesar de
encontrarmos resultados similares a de Pires para o qubit, a andlise para o ambiente foi inconclusiva.
Naturalmente, indicamos que desenvolvimentos futuros na busca de interpretacao para QSLs, baseadas
em limitagcGes de recursos fisicos em sistemas abertos (ndo-unitdrios) deveriam: (i) replicar a analise
feita neste trabalho com maior precisao de maquina ;(ii) buscar resultados analiticos, em regime de
acoplamento forte, para o0 modelo de dephasing; e (iii) explorar outros modelos de evolu¢do nao-
unitaria. Assim, poderemos avangar o conceito de QSLs para conexdes mais profundas com outras

areas de desenvolvimento quantico.
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